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ABSTRACT

This final report describes the research carried out by Professors

Sanjoy K. Mitter and Bernard Levy and Mr. Yehuda Avniel and Mr. Saul Gelfand

during the time period March 15, 1984 to March 15, 1985C with support

extended by the Air Force Office of Scientific Research under Grant AF-AFOSR

82-0135A.

The principal investigator was Professor Sanjoy Mitter. The contract

monitors were Dr. 1. Burns and Dr. Marc Jacobs of the AFOSR Directorate of

Mathematical and Information Sciences.

This research is concerned with fundamental aspects of filtering

theory, statistical signal processing and stochastic variational problems

related to estimation of Markov Random Fields. We take a viewpoint which

exploits the analogies between these problems and problems of quantum and

statistical physics. The proposed research is of great potential benefit to

the U.S. Air Force in areas such as guidance and control, pattern

recognition and image processing related to radar signals and signal

processing.

2

. * ]



-T-. .- V -j ,,b -j -.. 7 - . .

* --- i

TABLE OF CONTENTS

Page

1. INTRODUCTION 4

2. FUNDAMENTAL VIEWPOINT OF OUR RESEARCH AND PROGRESS TO DATE 7

2.1 Introduction 7

2.2 The Analogies Between Problems in Statistical (and Quantum) 8
Physcis and Optimal Probabilistic Reconstruction of Signals

2.3 Images as Markov Random Fields 8 :%

2.4 The S-Matrix and Estimation for Stationary Gaussian Processes 10

2.5 Estimation Theory, Statistical Signal Processing and 10
Inverse Problems

2.6 Nonlinear Filtering and Stochastic Variational Problems 1s

REFERENCES 20

r

per

r, *2

3

- .- . . . .. . ..
: ~ ~ ~ ~ ~ C .Co,' . : ... ;"

(IV D'



1. Introduction

/ This report is concerned with the following fundamental aspects of

Stochastic Systems Theory:

(i) Filtering, Statistical Signal Processing and related Problems

in Scattering and Inverse Scattering Theory

(ii) Theory of Markov Random Fields and related questions in Image

Processing and Image Understanding'

9J

(iii) Stochastic Variational Calculus and Stochastic Adaptive

Control

(iv) Parallel and Distributed Algorithms for Statistical Signal

Processing

Problem areas (i) and (iii) are intimately related in the sense that

stochastic control in the presence of incomplete observations has as a sub-

problem non-linear filtering. Moreover, the problem of parameter

identification could be considered as a special case of nonlinear filtering

and the problem of optimal adaptive control (suitably formulated) can be

considered as a special case of stochastic control with partial uncertain

observations. One must remark that this necessitates taking a Bayesian

point of view.

Stochastic Calculus of Variations could be considered as a special case

4
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of Stochastic Control. This is well known in the deterministic situation

and indeed the two fields could be considered equivalent, namely, by

appropriate transformation one can pass from one formulation to the other.

This is, however, not so in a stochastic setting where careful distinction

needs to be made between 'open-loop control' (pre-programmed control) and

*feedback control" (control based on past history of the observations).

This report describes work which conforms to the comprehensive proposal

submitted to the-Air Force Office of Scientific Research in September 1981.

One of the new directions proposed was to develop a Scattering and Inverse

Scattering Framework for estimation problems for random fields.

Considerable progress has been made in the direction during the current

period of the grant. In addition, during the current period of this grant

we have initiated new research on Markov Random Field models for images for

the purpose of reconstruction of surfaces from noisy data. Using a Bayesian

point of view, these estimation problems lead to stochastic variational

problems which can be solved using methods of simulated annealing. We have

undertaken fundamental theoretical research with a view to understanding the

method of simulated annealing. These methods are also particularly suited

for parallel and distributed computation.

It should also be mentioned that the work proposed here is potentially

of great benefit to the U.S. Air Force. Increasingly, it is being

recognized that ad hoc techniques using linearization and perturbation

methods are unsatisfactory and nonlinear theory is ripe for applications.

The Kalman filter has played an important role in guidance and control of

aerospace vehicles. However, the extended Kalman filter which is used to

-
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handle nonlinear situations is not understood from * scientific point of

view and often given rise to incurable convergence difficulties. We have

made some progress towards alleviating this situation. In particular, we

have greatly enhanced understanding about the derivation and functioning of

the Extended Kalman Filter.

The control of future aircrafts, large space structures, and aerospace

vehicles is a problem of continuing importance from the point of view of

designing adaptive systems that operate reliably over a wide operating

envelope. Similarly, the control of advanced jet engine, whose dynamic

characteristics change rapidly with operating conditions, pose difficult

problems if one wishes to design a control system which accomplishes

commanded thrust level changes rapidly, while maintaining fan and compressor

stability margins. It would appear that an adequate theory of stochastic

adaptive control will be essential to solve these problems. Due to the

tremendous increase in computing power available and decrease in costs in

memory size the problem of dealing with non-linearities is no longer the

insurmountable obstacle it was.

Signal Processing forms an important aspect for various systems which

is vital to the success of Air Force Missions. Our research leads to new

algorithms and new computational structures for the solution of signal

processing problems. Moreover these algorithms and structures are

particularly suited to VLSI implementations and indeed often suggest novel

VLSI structures.
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2. Fundamental Viewpoint of our Research and Progress to Date

2.1 Introduction

Our research is concerned with the fundamental problem of statistical

signal analysis, namely, the optimal probabilistic reconstruction of a

signal from noisy observations of the signal. The term signal analysis

encompasses such tasks as optimal processing, analyzing, and understanding

of signals.

The distinctive features of this research are (i) the modelling and

analysis of the signals in a form which has striking analogies to models in

statistical and quantum physics, (ii) the optimal incorporation of a priori

knowledge about the signal in the mathematical modelt (iii) recognition of

the role of symmetries (in particular, the relation between physical

symmetries and the action of a symmetry group on the space of signals); (iv)

algorithms for probabilistic reconstruction and analysis which permits

implementation in parallel and distributed architectures.

The identification of probabilistic models of signals as models arising

in physics often suggests a parallel VLSI (very large scale semi-conductor

integration) implementation of the algorithm for the reconstruction of the

signal. Indeed, it is believed that algorithms that are best for VLSI

implementation must mirror the physics of large-scale semi-conductor

integration. An example of this process might be the modelling of

Stationary Gaussian Processes as generalized transmission lines.

Our recent research is also motivated by the work of Marr and Poggio

[1] on vision and has as its aim the construction of a mathematical theory

of early vision. According to this theory, early vision is primarily

7
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computational and is concerned with such functions as recognition of

symmetries, surface reconstruction, edge-detection, and extraction of depth

information. The attempt at a construction of a mathematical theory of

*. early vision may itself shed new light upon theories of vision.

2.2 The Analogies Between Problems in Statistical (and Quantum) Physics and

Optimal Probabilistic Reconstruction of Signals

In our earlier work ((21, (31, (41) we have shown how mathematical

problems of linear and non-linear filtering (where the signals are modelled

as functions of Markov diffusion processes) are closely related to

mathematical problems in quantum physics. The fundamental reason for this

is that the representation of the estimate of the signal (from noisy

" observations) as a conditional expectation can be achieved using a

Stochastic Feynman-Kac formula. The recursive estimation problem leads to a

stochastic partial differential equation which has the interpretation as a

(euclidean) field and in this viewpoint the Kalman filter plays the role of

the free euclidean field (Ornstein-Uhlenbeck operator) of quantum physics.

This viewpoint has led to a deepening of our understanding of non-linear

filtering and new results.

We would like to argue that this viewpoint of analogies with physics is

deep and leads to new insights and to solutions of new problems in the

reconstruction of signals,

2.3 Images as Markov Random Fields

The use of Markov Random fields and Bayesian estimation for signal



processing tasks such as image restoration and surface reconstruction has

recently been proposed by Grenander, Geman (cf. for example [5]) and our own

unpublished work. The simplest such model of the signal (image to be

recovered) corresponds to a one-dimensional Ising ferromagnet on a finite

lattice with free boundary conditions. If such a signal is observed in the

presence of noise, then the corresponding mathematical model corresponds to

an Ising ferromagnet with an external random magnetic field. The signal-to-

noise ratio has the interpretation as the temperature of the system. Given

the prior distribution of the signal and the noise, the posterior

distribution can be computed using Bayes formula and is in the form of a

Gibbs distribution. The maximum a posteriori probability estimate can be

reduced to the minimization of an energy function and corresponds to finding

the ground state of the Ising ferromagnet with external field. This problem

is effectively a large integer-quadratic programming problem where the

matrix has a band structure.

In recent work we have been able to decompose this problem into a

sequence of one-dimensional minimization problems by using a dynamic

programming recursion on the boundaries (odd bonds between neighboring

cells). This decomposition corresponds to solving a sequence of estimation

problems under different "scalesw and is strikingly resemblant of the

renormalization group approach to statistical mechanics developed by K.

Wilson. In contrast to physics, however, here we are interested in

obtaining the detailed structure of the random fields.

We have also used Markov random field models in conjunction with

stochastic approximation (simulated annealing in the terminology of

9



Kirkpatrick, et al. [6]) for surface reconstruction that preserves

discontinuities in images.

2.4 The S-Matrix and Estimation for Stationary Gaussian Processes

To illustrate the power of this viewpoint, we discuss some of our

recent work on modelling and estimation of stationary Gaussian processes

indexed by the integers. The basic idea is that the analog of the S-matrix

(scattering function) representing the interaction between the past and

future of a regular stationary Gaussian process is the fundamental object

for performing estimation, prediction, and interpolation for Gaussian

signals in additive white noise. Indeed the S-matrix can be explicitly

*computed and is an Lm-function, unitary on the boundary of the unit-disc.

* If the process is strongly mixing, then this function is in the class H' +

C. Under some further mild assumptions, it can be shown that the S-matrix

uniquely characterizes the spectral density of the process (up to a

multiplicative constant). The relationship of this S-matrix to the

scattering function of Lax and Phillips can be explicitly characterized.

The Hankel and Toeplitz operators induced by the S-matrix have a

special role to play in this theory, and using these operators, one can

solve the filtering and prediction problem and leads to a new formulation of

the approximation of Gaussian processes [7]. This work uses the deep theory

of approximation of Hankel operators as developed by Adamjan, Arov and

Krein (8].

2.5 Estimation Theory, Statistical Signal Processing and Inverse Problems

I 10



One of the objectives of our research has been to study the links

existing between linear estimation theory and inverse scattering theory, and

to use this relationship to obtain efficient algorithms for solving inverse

scattering problems. The algorithms that we have obtained are efficient,

recursive, and operate on a layer stripping principle, whereby an unknown

scattering medium is reconstructed layer by layer, in a sequential fashion.

These algorithms can be viewed as the counterpart of the celebrated fast

algorithms of linear estimation theory due to Levinson, Krein, Szego, and

Schur, which have been used extensively by Kailath and his colleagues,

Dewilde, Dym, and many others. More recently, we have also been able to

show that Kalman filtering techniques can be applied to inverse scattering

problems, when reflection coefficients have a rational structure. The

inverse scattering methods that were obtained by this analogy with linear

estimation theory were then applied to several inverse problems such as the

inverse seismic or inverse resistivity problems of geophysics. The study of

the relations existing between linear estimation and inverse scattering has

been beneficial not only to inverse scattering, but also to linear

estimation, where we have been able to solve several previously unsolved

problems. For example, in [6] by using the analogy existing between the

linear estimation problem for isotropic random fields, and the two-

dimensional (2-D) inverse scattering problem for a potential with radial

symmetry, we have obtained an efficient estimation technique for isotropic

fields. This technique can be viewed as a generalization of the 1-D

Levinson equations of linear prediction, but previous attempts to extend the

Levinson recursions to two-dimensions had failed because they were forcing a

11
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quarter-plane or half-plane causality structure which does not exist for

random fields.

Since our results are described in detail in [1]-[9], we will only

outline here the main aspects of our work.

(1) In the area of inverse scattering, we have obtained in [4], (5] a

new class of differential inverse scattering methods which operate

on a layer stripping principle and reconstruct a scattering medium

recursively, layer by layer. These inverse scattering methods

generalize an algorithm introduced by Schur in 1917 for testing

the boundedness of a function which is analytic inside the unit

circle. The recursions appearing in this algorithm are also

identical to the so-called fast Cholesky equations for factoring a

Toeplitz operator in causal times anticausal (or lower times upper

triangular) form. From a more general point of view, differential

inverse scattering algorithms rely on the method of propagation of

singularities, and depending on whether this method is applied to

two-component wave equations, to the telegrapher's equations, or

to Schrodinger equations, layer stripping algorithms can be

expressed in several forms. Thus in addition to the Schur

algorithm that we have developed, several variations of the same

technique have been proposed by Symes, Santosa and Schwetlick,

Bube and Burridge, and Corones and his group, among others.

Because of their recursive structure, and because the quantities

that they propagate can be interpreted physically as being the

waves inside the medium, layer stripping algorithms are more

12



convenient than traditional inverse scattering methods (introduced

by Gelfand and Levitan, Marchenko, Krein, Kay and Moses,

Faddeev...) which rely on integral equations. However, it was

shown in [4] that differential and integral equations methods can

be related from a system-theoretic point of view, by using

causality. In [5] various applications of layer stripping

algorithms to the reconstruction of transmission lines, inverse

seismic problems, and linear estimation of stationary processes

are discussed. In addition, for the case when the scattering

medium that we want to reconstruct is lossy, and when we have

access to transmission data, as well as scattering data, a

generalization of the Schur algorithm based on two sets of coupled

equations is derived and is used to reconstruct a lossy

transmission line.

(2) In [7] the inverse scattering problem for the case when the

reflection coefficient of the scattering medium is rational was

considered. Several solutions of this problem have been proposed

in the past, but all these solutions were quite inefficient since

they relied on exploiting the rational structure of the reflection

coefficient inside a Wiener Hopf equation defined for every value

of the depth x at which the reflectivity function r(x) of the

scattering medium needs to be reconstructed. The missing concept

was clearly that of a state-space model. In (7] by using a simple

state-space representation for the left and right going waves

13
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propagating inside the medium when the medium is probed from the

left by an impulsive wave, we were able to obtain a Kalman filter-

like solution for the inverse scattering problem. This solution

is expressed in terms of the so-called Chandrasekhar equations of

linear filtering theo-y.

(3) Since the fast inverse scattering algorithms for two-component

wave systems described in [4], (5] are expressed in terms of the

Levinson and fast Cholesky recursions, and since these recursions

are usually associated with a Gram-Schmidt orthonormalization

process, and perform a factorization of a Toeplitz (or Hankel)

operator or of its resolvent in terms of triangular operators, it

is natural to ask whether a similar orthonormalization point of

view can be used to interpret the results of [41, [5]. In [9] it

is shown that such an interpretation exists, but that unlike in

the derivation of the Szego orthogonal polynomials, or of the

continuous Krein polynomials, where a scalar spectral function was

used, we need to associate a 2x2 matrix spectral function to a

two-component wave system. Then by orthonormalizing the free

solutions of the system with respect to this matrix, we obtain the

Marchenko equations for solving the inverse scattering problem.

The functions obtained by this Gram-Schmidt orthonormalization

process are now 2x2 matrix orthonormal functions, and all sorts of

identities, such as the Christoffel-Darboux formulas, can be

obtained for these functions. The matrix operators factored by

14
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the Levinson and fast Cholesky recursions are also put in

evidence. We hope that these results will be useful in the

context of linear estimation to obtain some further insight on the

properties of lattice realizations of scalar stationary stochastic

processes.

(4) The layer stripping inverse scattering methods developed in [4],

[5] were used in [1]-[3] to solve the inverse seismic problem for

one-dimensional layered media. In [1], the case of an acoustic

medium was considered. In this problem, the objective is to

reconstruct both the density p(x) and the wave speed c(x) of the

medium as functions of the depth x. The Schur algorithm was used

to solve this problem. By probing the medium obliquely at two

different angles with plane waves, and by running two sets of

recursions corresponding to these two experiments, it was shown

that the density and wave speed could be reconstructed

simultaneously, in a recursive way, by increasing depths. The

point source case (i.e. the case when the probing wave is an

impulsive spherical wave) was also considered. In this case, it

was shown that by slant-stacking, i.e. by performing a Radon

transform on the data collected by the receivers on the surface,

the plane-wave data could be synthesized, and the algorithm

mentioned above for two plane waves could be used. In (2], the

more difficult problem when the medium is described by the

equations of elasticity was considered. In this case two types of

15



waves, the pressure (P) and stress (S) waves, can propagate inside

the medium and can be converted into each other at interfaces.

The objective is to reconstruct the two Lame parameters X(x) and

p(x) of the medium and the density p(x) as functions of depth. By

performing two experiments with impulsive plane P and S waves

which are obliquely incident upon the medium, in such a way that

the lateral wave number is the same in both experiments, and by

propagating recursively the two sets of measured waves for these

two experiments for increasing depth, X(x), p(x) and p(x) can be

reconstructed recursively. The only difference with [1] is that

the system used to propagate the downgoing and upgoing P and S

waves is a differential system of order 4 (instead of order 2 for

the acoustic problem). In [3] the inverse problem for an acoustic

medium probed by spherical harmonic waves, and when the reflected

data is measured for all lateral wave numbers, was considered. In

this case, given the data for two frequencies (instead of two

angles in [1]) and by using a transformation procedure to solve

the inverse resistivity problem (see (5) below), it was shown that

a layer stripping technique could be used to reconstruct the

density p(x) and wave speed c(x) separately.

(5) In [8] the inverse resistivity problem for a layered earth was

considered. In this problem, the earth is probed by injecting

some current inside the earth, and lateral potential gradients on

the surface ae measured. This problem was suggested to us by Dr.
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Steve Lang from Shlumberger. Since the potential is described by

an elliptic equation, and not by the wave equation, this problem

is not an inverse scattering problem. Nevertheless, there exists

a simple mapping technique which can be used to convert the

inverse resistivity problem into an equivalent inverse scattering

problem, to which existing 1-D inverse scattering techniques can

then be applied. In this context, it turns out that a number of

previously introduced inverse resistivity techniques can be

identified with classical signal processing algorithms. The

mapping used to transform the inverse resistivity problem into an

equivalent inverse scattering problem has also an elegant

interpretation in terms of Maxwell's method of images.

(6) In E6] the problem of estimating a 2-D isotropic random field in

noise given some observations over a disk of radius R was

examined. The isotropy of the field and the circular symmetry of

the observation geometry were exploited by expanding the field in

Fourier series, and noting that the Fourier coefficient processes

were uncorrelated. This implies that the original 2-D estimation

estimation problem can be decomposed into a countable set of 1-D

estimation problems for the Fourier coefficient processes. The

filtering equation for each Fourier coefficient process turns out

to be identical to the Gelfand-Levitan equation for reconstructing

a circularly symmetric potential from its spectral density r(),

where r(X) is here the spectral density of the random field. The

17
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structure of the Gelfand-Levitan equation can then be exploited to

obtain some Levinson-like recursions for the optimum filter, which

are very efficient, and provide therefore a simple solution of the

random field estimation problem. This algorithm is the first fast

algorithm ever derived in two dimensions, and a preliminary study

indicates that it can also be used to solve the 2-D maximum

entropy spectral estimation problem for isotropic fields.

2.6 Nonlinear Filtering and Stochastic Variational Problems

A long-standing open problem in filtering theory has been to obtain a

* derivation of the Extended Kalman Filter and explain its qualitative

behavior. The Extended Kalman Filter is widely used in aerospace systems

* and is known to function very well in many situations, but is also known to

exhibit divergence phenomenon in the presence of modelling errors. In the

* paper [1], first steps towards a rigorous derivation of Extended Kalman

Filter as well as explaining its qualitative properties were taken. To

* obtain this result, we use the stochastic control interpretation of

* nonlinear filtering described in the joint paper with Wendell Fleming (2],

* the Morse Lemma with parameters (3], and the work of Malliavin on Stochastic

* Jacobi fields (4].

It was suggested that the Stochastic Control Interpretation, of

Nonlinear Filtering would provide the means for obtaining bounds for

*nonlinear filtering. A first step in this direction has been taken in the

paper mentioned above. Specifically, the analog of the Fisher Information

Matrix has been defined. This paper also shows how the nonlinear filtering

18

..... . . . .



problem is related to the identification problem. We have done further work

on these issues and we are considering examples related to the phase-lock

loop to understand better various lower bounds on performance that can be

obtained. A joint paper with A. Moro and T. Moura is now in preparation.

This work also has connections with recent work of Bobrovsky et al [5] and

Adaptive Filtering.

An important open problem for the last few years has been the

construction of robust filters using pathwise nonlinear filtering for

observations which are unbounded. This problem has been settled in the

negative by Sussmann based on earlier work by Mitter. More specifically, we

have shown by example that the normalization constant becomes infinity for

certain *physical' observation paths. This suggests that the normalization

is important and it is necessary to construct the normalized conditioned

density by examining the robust versions of the numerator and denominator of

the Kallianpur-Striebel Formula after 'cut-offs' have been introduced. One

then has to remove the cut-off in an appropriate way. This is a familiar

procedure in Statistical Mechanics but some key monotonicity properties seem

to be absent in the problem under investigation.

For further progress on the qualitative behavior on nonlinear filters,

it is necessary to understand the small-time and large-time behaviors of

these filters. Mathematically, this problem is related to the small-time

behavior of conditional diffusions and to large deviation theory. For

diffusion processes there now exists a large body of theory developed by

Donsker-Varadhan and Ventcel-Freidlin. What is needed is a generalization

of these ideas to conditional' diffusion processes, and we have begun

work on that generalization.

19
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